Dual Polarization the Challenge

Dusan Zrnic (NSSL)

Two Dual Polarization Modes

Simultaneous SHV (it is not fully polarimetric)

H and V are transmitted simultaneously, both copolar components are received

Alternate AHV (it is fully polarimetric) H and V are transmitted alternatively H V H V H V H V

_|___|___|___|

Challenge: DualPol-PAR to have Same Data Quality as DualPol-WSR-88D

Polarimetric Data Quality Achieved on Conventional Radars:

- High cross-correlation coefficient ρ_{hv} , small bias in differential reflectivity Z_{DR} , and low linear depolarization ratio L_{DR} , characterize a well designed polarimetric radar
 - EEC recent Polarimetric Radars (Sigmet Processor, Gamic Processor): ρ_{hv} ≈ 0.996 to 0.998
 - KOUN (WSR-88D, NSSL design) ρ_{hv} ≈ 0.998, L_{DR} < -33 dB
 - Z_{DR} bias should be < 0.15 dB

ISSUES

affecting dual polarization data

- COUPLING between the horizontal and vertical components (inherent to Planar PAR for measurements away from the two principal planes)
- CROSS-POLAR PATTERN (present in PAR and Conventional Radar)
- MATCHING OF BEAMS at vertical and horizontal polarizations (present in PAR and Conventional Radar)

Transmitted Linearly Polarized Waves from a

 Parabolic Dish are orthogonal throughout the whole field of view

 Planar Phased Array are not orthogonal through most of the field of view {COUPLING - Planar Array} Alternate (AHV) Mode

- Tested extensively on parabolic antennas
- Planar Phased Array
 - Performs well if corrected over the field of view
 - Correction to mimic conventional radar can be done over most of the field of view
 - Correction is multiplicative and is a function of pointing direction

COUPLING, Ref: Guifu et al 2009 IEEE Tr., GRS-47 {COUPLING – Planar Array} Simultaneous (SHV) Mode

- Accepted for the WSR-88D
- Planar Phased Array
 - Performs with multiplicative correction only over a limited field of view
 - Corrections* over the remaining field of view are not practical
 - Therefore alternatives are needed for most of the field of view:
 - Orthogonal coding
 - Alternate HV
 - Other?

COUPLING, Ref: Guifu et al 2009 IEEE Tr., GRS-47

Field of View SHV mode

 $Z_{DR} = 0 \text{ dB}, r_{hv} = 1; b = 0 \text{ deg}, F_{DP} = 180 \text{ deg}$

Field of View AHV mode

 $Z_{DR}=0 \text{ dB}, r_{hv}=1;b=0 \text{ deg}$

Decoupling Doppler from Differential Phase (AHV - mode)

- Scanning strategy and transmission sequence should be designed to optimize overall performance. This is a System Design Problem
- The following Transmitted Sequence Triplet decouples Doppler from Diff Phase

{SOLUTION to COUPLING} Cylindrical Phased Array (CPA)

- There is no inherent coupling so CPA is equivalent to a conventional radar (Ref: Guifu 2009 – OU-NSSL Patent pending)
- System Study is in Order scanning strategy, multiple beams, frequencies, beamwidth, waveforms,

Fig. 1. Cylindrical array test bed antennna.

Advantages of CPA

- No beamwidth increase if AZ scans are at constant Elevation. That is: Quality of measurements is isotropic in each conical scan.
- Effects of precipitation on the radome is expected to be smaller.
- Polarimetric issues are equivalent to the issues concerning the conventional radar.

CROSS-POLAR PATERN

 This issue affects both the PAR and the Parabolic dish antenna

 Two types of cross polar pattern have profound effect on biases of the polarimetric variables

Two Antenna Types

1) SINGLE CROSS-POLAR MAIN LOBE:

Principal cross-polar LOBE centered on the copolar main lobe

(2) MULTIPLE CROSS-POLAR MAIN LOBES: symmetric with respect to beam axis and IN PHASE OPOSITION TO EACH OTHER :

Comparison

• Type I (single lobe) pattern is much more detrimental than type II.

• To achieve the same reduction of bias in polarimetric variables the integrated cross-polar single lobe pattern to integrated main lobe pattern must be 10 dB lower then the value for multiple lobe (type II) pattern.

- Pin Piert

Envelope of Z_{DR} bias < 0.15 dB in the Az – EI from boresight (SHV mode)

COUPLING

{COUPLING - Planar Array} Alternate (AHV) Mode

- The differential phase and Doppler are coupled
- Tested extensively on parabolic antennas
- Planar Phased Array
 - Performs well if corrected over the field of view
 - Correction to mimic conventional radar can be done over most of the field of view
 - Correction is multiplicative and is a function of pointing direction

COUPLING, Ref: Guifu et al 2009 IEEE Tr., GRS-47

MATCHING BEAMWIDTHS

 At 20 dB below the peak the beam patterns for H and V polarizations should be within 1.85 dB of each other